

SBE

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

Walter Streeter

WSBT TV

Assistant Chief Engineer

14+ Years Cisco CCDA and CCNA Certified

9+ Years Cisco CCNP Certified

20+ Years working in networking

9+ Years working in broadcasting

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

INTRODUCTION – Presenter NETWORKING 101 / 102

NETWORKING 101

Standards Organizations Relevant IEEE & IETF Standards OSI & TCP/IP Conceptual Models Hardware Correlations to the OSI Model **Encapsulation & Decapsulation** TCP/IP Protocols LAN & WAN Technologies **Physical Ethernet Options** Summary

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

AGENDA
NETWORKING 101 / 102

- International Organization for Standardization ISO (not an acronym, Greek for equality)
 - Nongovernmental
 - Standards bodies from over 160 countries
 - Collaborate in development of international standards for technology (and other things)

- Founded in 1865
- Facilitates international connectivity in communications networks,
- Allocate global radio spectrum and satellite orbits
- Develops the technical standards that ensure networks and technologies seamlessly interconnect
- Institute of Electrical & Electronic Engineers (IEEE)
 - Leading developer of international standards that underpin many of today's telecommunications, information technology, and power-generation products and services
 - Portfolio of nearly 1,032 standards
 - Includes the 802® standards for local, metropolitan, and other area networks, including Ethernet and Wireless LAN (commonly referred to as Wi-Fi®)

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

Standards Organizations NETWORKING 101

SBE

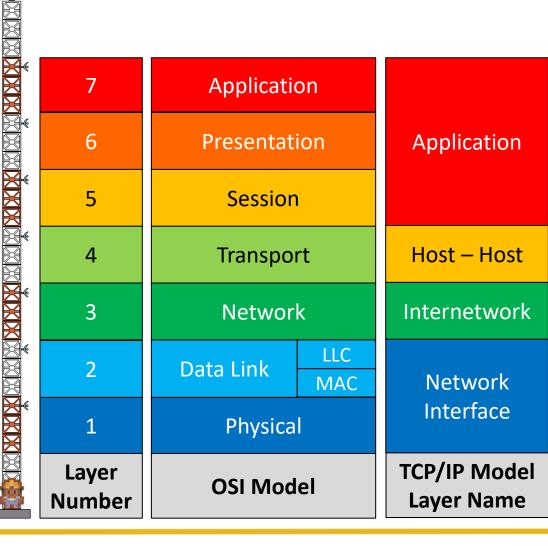
- IEEE Project 802® Standards
 - IEEE 802®: Overview & Architecture
 - IEEE 802.1™: Bridging & Management
 - IEEE 802.1Q: VLAN
 - IEEE802.1ad: QinQ
 - IEEE 802.1D: Spanning Tree Protocol (STP) bridge protocol
 - IEEE 802.1w: Rapid Reconfiguration of Spanning Tree
 - IEEE 802.1s: Multiple Spanning Tree Protocol (MSTP)
 - IEEE 802.2™: Logical Link Control
 - IEEE 802.3™: Ethernet
 - IEEE 802.11[™]: Wireless LANs
 - IEEE 802.15™: Wireless Specialty Networks (WSN)
 - IEEE 802.16™: Broadband Wireless MANs
 - IEEE 802.19™: Wireless Coexistence
 - IEEE 802.21™: Media Independent Handover Services
 - IEEE 802.22™: Wireless Regional Area Networks
 - https://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

IEEE 802 Standards NETWORKING 101

- Internet Engineering Task Force (IETF)
 - Founded in 1986
 - Standards development organization for the Internet
 - Makes voluntary standards that are often adopted by Internet users, network operators, and equipment vendors
 - Helps shape the trajectory of the development of the Internet
 - "...the overall goal of the IETF is to make the Internet work better." RFC 3935
 - Standards published as Request For Comment (RFC)
 - See https://www.rfc-editor.org/
 - Requirement Levels (RFC 2119):
 - MUST/REQUIRED/SHALL
 - MUST NOT/SHALL NOT
 - SHOULD/RECOMMENDED
 - SHOULD NOT/NOT RECOMMENDED
 - MAY/OPTIONAL
- Humorous RFC's:
 - RFC 1149 Standard for the transmission of IP datagrams on Avian Carriers
 - RFC 2549 IP over Avian Carriers with Quality of Service
 - RFC 2324 Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)

lacksquare


https://www.rfc-editor.org/

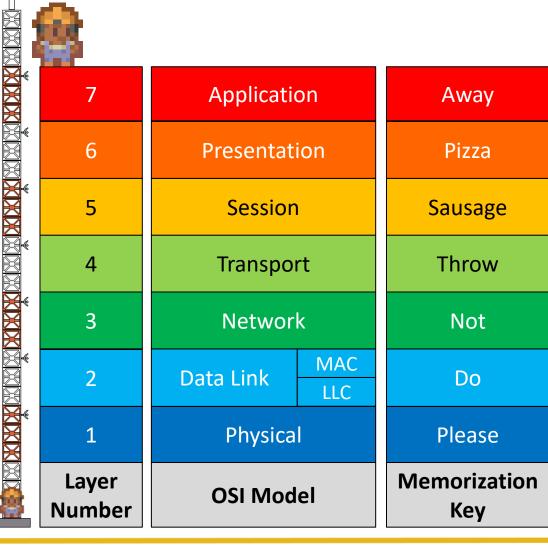
- KEY RFC's to Review:
 - RFC 2119 Key words for use in RFCs to indicate requirement levels
 - RFC 3339 Date and time on the Internet: timestamps
 - RFC 1918 Address allocation for private internets
 - RFC 1912 Common DNS operational and configuration errors
 - RFC 2822 Internet message format
 - RFC 7231 Hypertext Transfer Protocol (HTTP/1.1): Semantics and content

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

IETF Standards NETWORKING 101

The Transmission Control Protocol / Internet Protocol (TCP/IP) and its related protocols are maintained by the Internet Engineering Task Force (IETF) and predates the OSI model. The TCP/IP layers will be compared with the OSI model layers in the diagram to the left for reference.

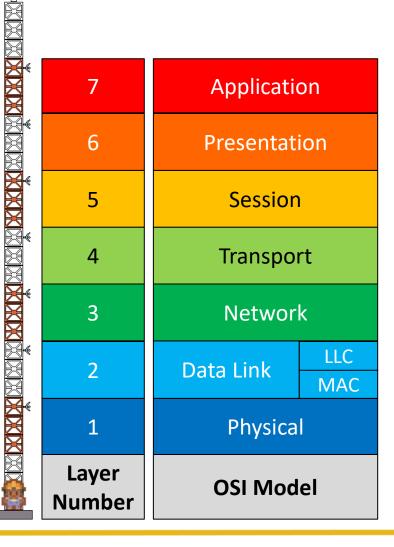
https://www.ietf.org/standards/rfcs/ https://www.rfc-editor.org/rfc-index-100a.html

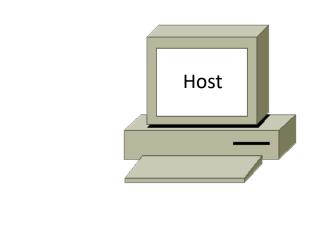

The Open Systems Interconnection (OSI) model was developed by the International Organization for Standardization (ISO) to provide a conceptual reference of how information flows and is communicated between devices on a network.

https://www.iso.org/standard/20269.html

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

OSI & TCP/IP Models
NETWORKING 101

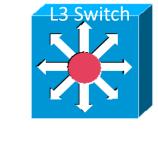




Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

OSI Memorization Method NETWORKING 101

Please Do Not Throw Sausage Pizza Away


Router

DSU

••••

Bridge

Hub

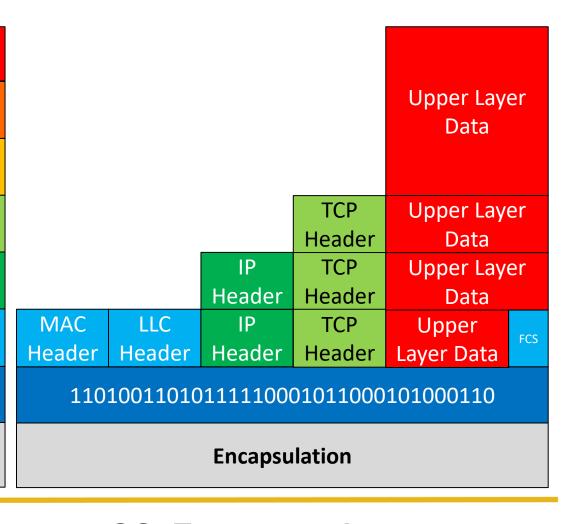
Devices

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

OSI Device Correlation
NETWORKING 101

XXX	7	Application	Data
3	6	Presentation	Data
	5	Session	Data
*	4	Transport	Segment
	3	Network	Packet
	2	Data Link LLC MAC	Frame
	1	Physical	Bits
	Layer Number	OSI Model	Data Unit

HTTP, FTP, DNS, SMTP, SNMP, Telnet SSL, TLS (Format Data, Encryption) NetBIOS, PPTP (Start/Stop Sessions) TCP, UDP, FCP, etc. IP, ICMP, IPSec Ethernet II/IEEE 802.3, 802.2, PPP, ATM Ethernet, USB, Bluetooth, IEEE802.11 **Example Protocols**



Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

OSI Data Units
NETWORKING 101

e	7 _	Application	Doto
	7	Application	Data
•	6	Presentation	Data
*	5	Session	Data
•	4	Transport	Segment
*	3	Network	Packet
***************************************	2	Data Link LLC MAC	Frame
•	1	Physical	Bits
	Layer Number	OSI Model	Data Unit

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

OSI Encapsulation NETWORKING 101

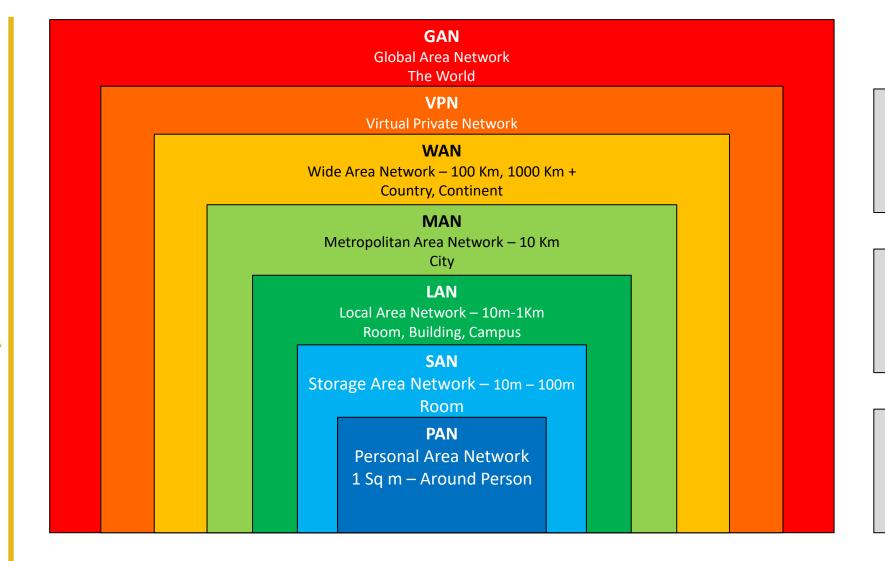
Decapsulation Encapsulation Upper Layer Data Upper Layer Data TCP TCP **Upper Layer Data Upper Layer Data** Header Header ΙP IP. **TCP** TCP **Upper Layer Data Upper Layer Data** Header Header Header Header MAC LLC IΡ TCP **Upper Layer** MAC LLC IΡ TCP **Upper Layer** FCS FCS Header Header Header Header Header Header Data Header Header Data 110100110101111110001011000101000110 11010011010111110001011000101000110 Network

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

OSI Encapsulation & Decapsulation
NETWORKING 101

Host A Host B Layer 2 Device Layer 2 Device Layer 3 Device **Ethernet Switch Ethernet Switch IP Router Application Application** Presentation **Presentation** Session Session **Transport Transport** De-Encap Encap Network Network Network De-Encap Encap De-Encap Encap Data Link **Data Link** Data Link Data Link Data Link South **Physical Physical Physical Physical Physical** Encapsulation Decapsulation

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals


OSI End-to-End NETWORKING 101

	Application	DHCP	DNS	FTP	HTTP	
	Layer	SMTP	SNMP	TFTP	SSH	
	Transport Layer	ТСР	UDP	FCP/C	Others	
/IP	Network	IPv4	NAT	ICMPv4	Routing: RIP OSPF BGP	
TCP/IP	Layer	IPv6	IPSec	ICMPv6 Discovery		
		ARP		RA	RP	
Data Link Layer		Protocol Determined by		Ethornot		
	Physical Layer		rk Type	Ethernet		

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

TCP/IP Network Protocols
NETWORKING 101

Internetwork

Network of multiple networks The Internet

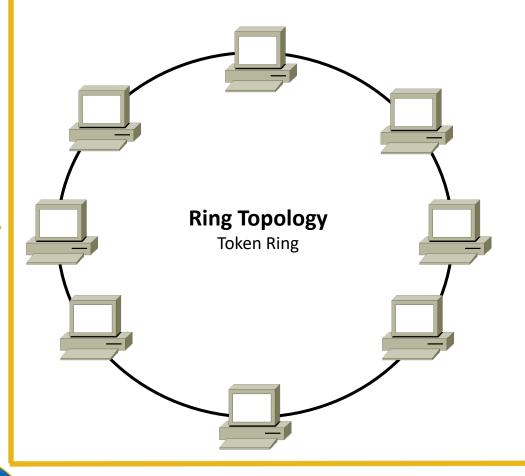
Network Host

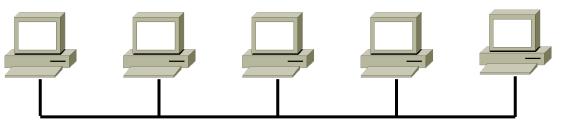
Physical device that can be connected to a network

Host Device Requirements

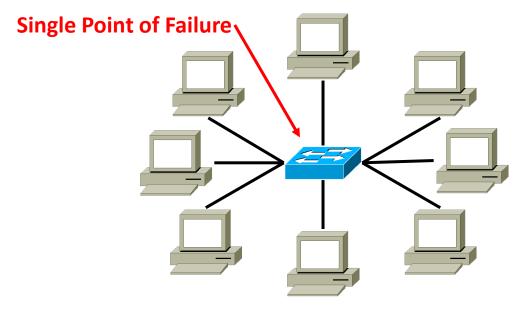
IETF RFC 1122, 1123 ARP, ICMP, TCP, DNS

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals


Network Types
NETWORKING 101


WAN Wide Area Network Teleco Ethernet Metro Ethernet Wireless Ethernet Dark Fiber OC-3: 155 Mbps DS-3: 45 Mbps DS-1: 1.5 Mbps DS-0: 64 Kbps ISDN PRI: 1-1.5 Mbps (US) ISDN BRI: 64-128 Kbps

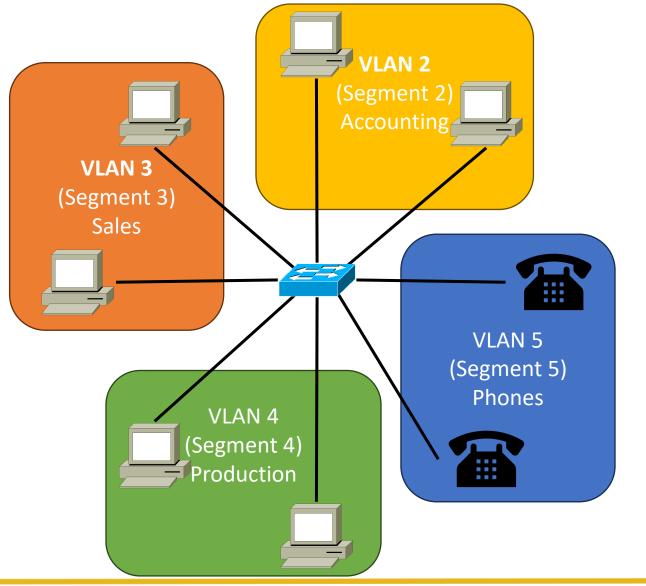
Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals


LAN-WAN Illustrated NETWORKING 101

Bus Topology

Early Ethernet -10BASE5 (thicknet), 10BASE2 (thinnet), RS-485

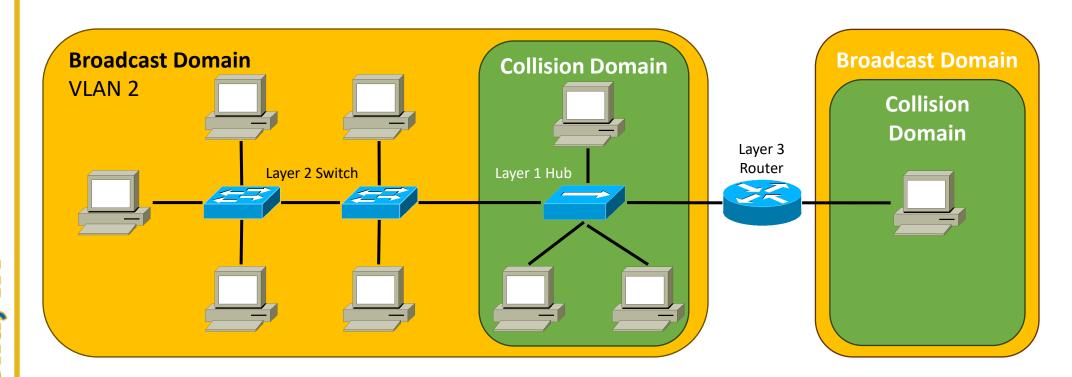
Star Topology


Contemporary Ethernet

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

Network Topologies
NETWORKING 101

SBE.

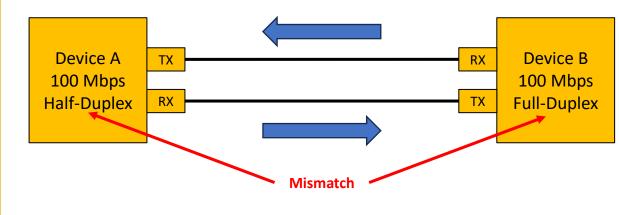


Why Segment?

- Flexible Architecture
- Performance
- Security

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

Network Segmentation
NETWORKING 101



Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

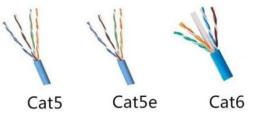
Broadcast & Collision Domains
NETWORKING 101

Modes

- Half-Duplex host receives OR transmits
- Full-Duplex host receives AND transmits
- Half-Duplex mode is used when the media is shared (i.e. hub)
- CSMA/CD algorithm enabled
 - Carrier-Sense, Multiple Access / Collision Detect
- Auto-Negotiation
 - Attempts to set host interface speed & duplex
 - Introduced with Fast Ethernet (100BASE-T)
 - Results sometimes questioned or mistrusted
 - Duplex mismatch results in collisions but no CSMA/CD
 - Performance significantly affected
 - Gigabit Ethernet improved / required (see 802.3ab)

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

Ethernet Standard – Some Details NETWORKING 101


IEEE Std	Date	Name	Data Rate	Cable Type
802.3i	1990	10BASE-T	10 Mbps	Cat3
802.3u	1995	100BASE-TX	100 Mbps	Cat5
802.3z	1998	1000BASE-SX 1000BASE-LX/EX	1 Gbps	Multimode fiber Single mode fiber
802.3ab	1999	1000BASE-T	1 Gbps	Cat5e or higher
802.3ae	2003	10GBASE-SR 10GBASE-LR/ER	10 Gbps	Laser Optimized MMF Single mode fiber
802.3an	2006	10GBASE-T	10 Gbps	Cat6A
802.3bq	2015	40GBASE-T	40 Gbps	Cat8 (Class I & II)
802.3ba	2010	40GBASE-SR4/LR4 100GBASE-SR10/LR4/ER4	40 Gbps 100 Gbps	Laser Optimized MMF or SMF Laser Optimized MMF or SMF
802.3bm	2015	100GBASE-SR4	100 Gbps	Laser Optimized MMF or SMF
SG	2016	Under Development	400 Gbps	Laser Optimized MMF or SMF
			Auto Negotiate	

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

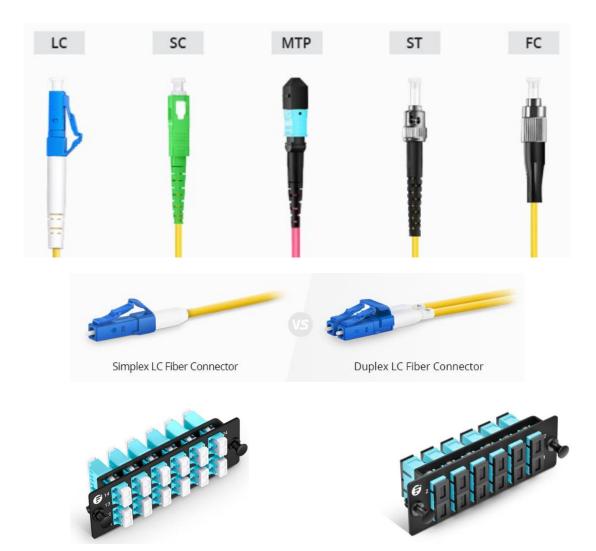
Ethernet Cabling Standards
NETWORKING 101

- CAT-5
 - 5 twists/inch
- CAT-5e
 - 5 twists/inch, Pairs twisted
- CAT-6
 - 6 twists/inch, Separator
- Multimode Fiber (MMF)
 - Shorter distances
 - Larger core
 - Types include OM1 OM4
 - Typical wavelength 850 & 1300 nm
 - Typically orange or aqua
 - Cheaper than SMF
- Single Mode Fiber (SMF)
 - Longer distance 100 Km
 - Smaller core
 - Typical wavelength 1310 / 1550 nm
 - Typically yellow
 - OS1 (indoor, 10 Km) & OS2 (outdoor 200 Km)
 - More expensive than MMF

T568A				
Wire # Wire Color				
1 Green / Whit				
2 Green				
3	Orange / White			
4 Blue				
5	Blue / White			
6	Orange			
7 Brown / While				
8	Brown			

T568B				
Wire # Wire Color				
1	Orange / White			
2	Orange			
3	Green / White			
4	Blue			
5	Blue / White			
6	Green			
7 Brown / White				
8	Brown			

TYPE	COLOR	CORE	SPEED (Gbps)	C1	C2	С3	C4	C5
OM1	Orange	62.5 μm	1/10	275 m	550 m	33 m	N/A	N/A
OM2	Orange	50 μm	1/10	550 m	550 m	82 m	N/A	N/A
OM3	Aqua	62.5 μm	1/10/40/100	550 m	550 m	300 m	100 m	100 m
OM4	Aqua	62.5 μm	1/10/40/100	550 m	550 m	400 m	150 m	150 m


C1 = 1000BASE-SX C2 = 1000BASE-LX C3 = 10BASE-SR/LR/ER C4 = 40GBASE-SR4 C5 = 100BASE-SR4

SBE.

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

Ethernet Cabling Information NETWORKING 101

- LC
 - Lucent Connector
 - To remember think LC = Little Click
 - Smaller connector
 - Connects to Fiber SFP modules
- SC
 - Snap-in Connector
 - To remember think C = Click
- ST
 - Straight-Tip
 - To remember think T = Twist
 - Larger connector
- MTP/MPO
 - 12/24 fibers, 1 small connector
- FC
 - Ferrule Connector

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

Fiber Optic Connector Types
NETWORKING 101

- SFP Transceivers
- Small Form-factor Pluggable
- 6 Relevant Types of SFPs
 - SFP 1 Gbps
 - SFP+ 10 Gbps
 - QSFP 4 Gbps
 - Q = Quad SFP
 - SFP28 25 Gbps
 - IEEE 802.3by (25GBASE-CR)
 - QSFP+ 40 Gbps
 - IEEE 802.3ba
 - QSFP28 40/100 Gbps
 - IEEE 802.3bm
 - QSFP56 100 to 400 Gbps

Standard	Cable Type	Distance
Т	Cat5/6	100 m
SX	MMF	550 m
LX/LM	MMF SMF	550 m 10 Km
EX	SMF	40 Km
ZX	SMF	70 Km

Do not confuse data and video SFPs

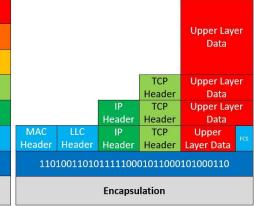
- 3G-SDI
- 6G-SDI
- 12G-SDI
- Coax and Fiber options
- Other signal types

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

Ethernet SFP Transceivers
NETWORKING 101

- Consumer wireless, "Wi-Fi", defined by IEEE 802.11
 - Wi-Fi 5
 - IEEE 802.11ac
 - Published 2013
 - Up to 3.5 Gbps
 - Wi-Fi 6
 - IEEE 802.11 ax
 - Published 2021
 - Theoretical data rate of 9.6 Gbps
 - Data rate meant to address dense Wi-Fi traffic
 - Wi-Fi 7, IEEE 802.11be, under development
- Licensed Wireless
- Outdoor point-to-point.
- Frequencies
 - Good write –up: https://www.cablefree.net/wirelesstechnology/ wireless-lan/wlan-frequency-bands-channels/

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals


Wireless Ethernet
NETWORKING 101

- Knowing the OSI Model is Essential
 - Please Do Not Throw Sausage Pizza Away!
 - Encapsulation Application Down to Physical Layer
 - Decapsulation Physical Up to Application Layer
- Physical Layer
 - Layer 1
 - Ethernet most prevalent
 - Ever increasing bandwidth & additional applications
 - SFP transceivers provide flexibility
- Data Link Layer
 - Layer 2
 - Switches limit collision domains
- Network Layer
 - Layer 3
 - Routers (or L3 switches) limit broadcast domains
- Fiber optic and wireless links must be engineered
- Standards Bodies
 - IEEE and IETF primary
 - ISO and ITU also involved

7	Application		Away
6	Presentation		Pizza
5	Session		Sausage
4	Transport		Throw
3	Network		Not
2	Data Link	MAC LLC	Do
1	Physical		Please
Layer Number	OSI Model		Memorization Key

7	Application	Data
6	Presentation	Data
5	Session	Data
4	Transport	Segment
3	Network	Packet
2	Data Link MAC LLC	Frame
1	Physical	Bits
Layer Number	OSI Model	Data Unit

SBE

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

Summary NETWORKING 101

NETWORKING 102

"Addressing" the Layer
IPv4 Packets
IPv4 Addresses

IPv4 Classes and Default Masks

IPv4 Reserved Address Space

VLSM and CIDR

The 10 Commandments of IPv4 Addressing

Examples and Exercises

Summary

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

AGENDA
NETWORKING 101 / 102

"Addressing" the Layer

- OR -

The OSI Layer for IP Addressing

Nah, nah, nah, nah, nah, nah, nah, Bitman!

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

Layer 3 (Network) Layer

Layer Number	OSI Model		Data Unit
1	Physical		Bits
2	Data Link	Network Data Link MAC	
3	Network		
4	Transport		Segment
5	Session		Data
6	Presentation		Data
7	Application		Data

				Upper Layer Data	
			TCP	Upper Layer	
			Header	Data	
		IP	TCP	Upper Layer	
		Header	Header	Data	
MAC	LLC	IP	TCP	Upper	
Header	Header	Header	Header	Layer Data	
11010011010111110001011000101000110					
Encapsulation					

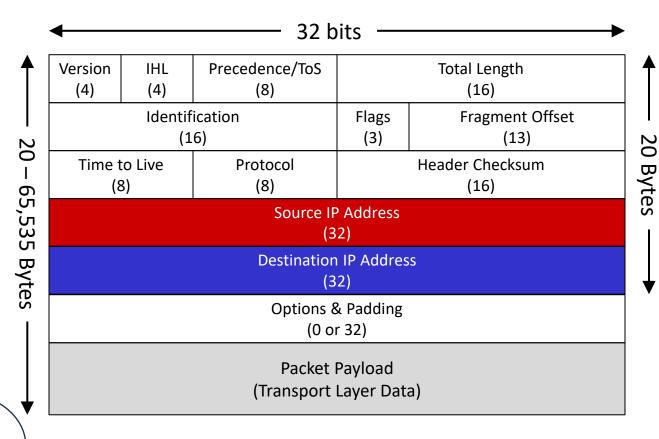
end,

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

"Addressing" the Layer **NETWORKING 102**

IPv4 Packets

- OR -


IPacketology – Dissecting the IP Packet

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

RFC 791 - IPv4

- Version 0100 = IPv4, 0110 = IPv6
- IHL Internet Header Length, the number of 32-bit words
- Precedence/ToS Type of Service to provide indication of desired quality of service
- Total Length Length of the datagram measured in octets, including internet header and data, 20 to 65,535 Bytes
- Identification Datagram fragment ID
- Flags Marks fragmentation eligibility
- Fragment Offset Fragment location

RFC 791 – https://datatracker.ietf.org/doc/html/rfc791 RFC 820 – https://datatracker.ietf.org/doc/html/rfc820

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

The IP Packet NETWORKING 102

RFC 791 - IPv4

- **Time to Live** Maximum time datagram allowed to remain in internet system
- Protocol Next level protocol used in the data portion of the datagram, see RFC 820
- Header Checksum Header error checking, redone at each hop
- **Source IP Address** Self-explanatory
- **Destination IP Address** Self-explanatory
- **Options** Security, timestamps, route recording, etc.
- Padding Ensure header ends on a 32bit boundary
- Packet Payload Packet data

→ 32 bits →					
Version (4)	IHL (4)	Precedence/ToS (8)	Total Length (16)		
	Identification (16)			Fragment Offset (13)	
	Time to Live Protocol Header Checksu (8) (8) (16)		Header Checksum (16)		
Source IP Address (32)					
Destination IP Address (32)					
Options & Padding (0 or 32)					
Packet Payload (Transport Layer Data)					

Bytes

RFC 791 – https://datatracker.ietf.org/doc/html/rfc791 RFC 820 – https://datatracker.ietf.org/doc/html/rfc820

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

The IP Packet NETWORKING 102

Network Layer Protocols

- ARP Address Resolution Protocol
 - Bridge between Layer 2 & 3
- RARP Reverse Address Resolution Protocol
 - Functions between Layer 2 & 3
- ICMP Internet Control Message Protocol

Transport Layer Protocols

- TCP Transmission Control Protocol
- UDP User Datagram Protocol

Application Layer Protocols

- DHCP Dynamic Host Configuration Protocol
- DNS Domain Name Service
- FTP File Transfer Protocol
- HTTP HyperText Transfer Protocol
- SMTP Simple Mail Transfer Protocol
- SSH Secure SHell

	Application Layer	DHCP	DNS	FTP	НТТР
		SMTP	SNMP	TFTP	SSH
TCP/IP	Transport Layer	ТСР	UDP	FCP/C	Others
	Network Layer	IPv4	NAT	ICMPv4 ICMPv6	Routing: RIP OSPF BGP
		IPv6	IPSec	Discovery	
		ARP		RARP	
	Data Link Layer Physical Layer	Protocol Determined by Network Type		Ethe	rnet

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

TCP/IP Network Protocols
NETWORKING 102

Decimal	Octal	Protocol	Decimal	Octal	Protocol	
0	0	Reserved	23	27	Trunk-1	
1	1	ICMP	24	30	Trunk-2	
2	2	Unassigned	25-60	31-74	Unassigned	
3	3	Gateway-to-Gateway	61	75	any host internal protocol	
4	4	CMCC Gateway Monitoring Message	62	76	CFTP	
5	5	Stream (ST)	63	77	any local network	
6	6	Transmission Control (TCP)	64	100	SATNET and Backroom EXPAK	
7	7	UCL	65	101	MIT Subnet Support	
8	10	Exterior Gateway Protocol (EGP)	66	102	MIT VAX Remote Disk Protocol	
9	11	Unassigned	67	103	Internet Pluribus Packet Core	
10	12	BBN RCC Monitoring	68	104	Unassigned	
11	13	NVP	69	105	SATNET Monitoring	
12	14	PUP	70	106	Unassigned	
13-14	15-16	Unassigned	71		Internet Packet Core Utility	
15	17	Cross Net Debugger (XNET)	72-75	110-113	Unassigned	
16	20	Chaos Stream	76	114	Backroom SATNET Monitoring	
17	21	User Datagram (UDP)	77	115	Unassigned	
18	22	Multiplexing	78	116	WIDEBAND Monitoring	
19	23	DCN Measurement Subsystems	79	117	WIDEBAND EXPAK	
20	24	Host Monitoring (HMP)	80-254	120-376	Unassigned	
21	25	Packet Radio Measurement	255	377	Reserved	
22	26	XEROX NS IP	Assign	ned In	ternet Protocol Numb	

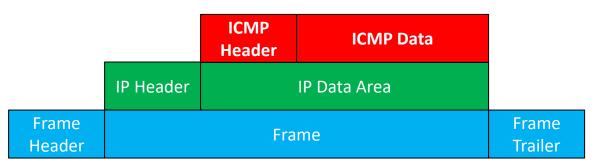
32 bits Precedence/ToS Total Length (4) (8) (16)Identification Fragment Offset (16)(13)Protocol Header Checksum (16)20 Bytes Source IP Address (32)Destination IP Address Options & Padding (0 or 32) Packet Payload (Transport Layer Data)

https://datatracker.ietf.org/doc/html/rfc820

SBE.

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

TCP/IP Network Protocols
NETWORKING 102


SBE

- Network Layer Protocol (ICMP)
 - RFC 1256, https://datatracker.ietf.org/doc/html/rfc1256
- Used by hosts for:
 - Error messaging/control
 - Network diagnosis
- Common messages
 - 0 Echo Reply
 - 3 Destination Unreachable
 - 5 Redirect Message
 - 8 Echo Request
 - 11 Time Exceeded
- Not associated with any transport layer protocol
- Typically associated with Layer 3
- Common applications
 - Ping Packet Inter-Network Groper
 - Source host sends ICMP "echo request"
 - Destination host receives, replied with ICMP "echo reply", RTT returned
 - Traceroute

Туре	Name	Reference	Туре	Name	Reference
0	Echo Reply	[RFC792]	20-29	Reserved (for Robustness Experiment)	[ZSu]
1	Unassigned		30	Traceroute (Deprecated)	[RFC1393][RFC6918]
2	Unassigned		31	Datagram Conversion Error (Deprecated)	[RFC1475][RFC6918]
3	Destination Unreachable	[RFC792]	32	Mobile Host Redirect (Deprecated)	[David_Johnson][RFC6918]
4	Source Quench (Deprecated)	[RFC792][RFC6633]	33	IPv6 Where-Are-You (Deprecated)	[Simpson][RFC6918]
5	Redirect	[RFC792]	34	IPv6 I-Am-Here (Deprecated)	[Simpson][RFC6918]
6	Alternate Host Address (Deprecated)	[RFC6918]	35	Mobile Registration Request (Deprecated)	[Simpson][RFC6918]
7	Unassigned		36	Mobile Registration Reply (Deprecated)	[Simpson][RFC6918]
8	Echo	[RFC792]	37	Domain Name Request (Deprecated)	[RFC1788][RFC6918]
9	Router Advertisement	[RFC1256]	38	Domain Name Reply (Deprecated)	[RFC1788][RFC6918]
10	Router Solicitation	[RFC1256]	39	SKIP (Deprecated)	[Markson][RFC6918]
11	Time Exceeded	[RFC792]	40	Photuris	[RFC2521]
12	Parameter Problem	[RFC792]	41	ICMP messages utilized by experimental	[RFC4065]
13	Timestamp	[RFC792]	42	Extended Echo Request	[RFC8335]
14	Timestam p Reply	[RFC792]	43	Extended Echo Reply	[RFC8335]
15	Information Request (Deprecated)	[RFC792][RFC6918]	44-252	Unassigned	
16	Information Reply (Deprecated)	[RFC792][RFC6918]	253	RFC3692-style Experiment 1	[RFC4727]
17	Address Mask Request (Deprecated)	[RFC950][RFC6918]	254	RFC3692-style Experiment 2	[RFC4727]
18	Address Mask Reply (Deprecated)	[RFC950][RFC6918]	255	Reserved	[JBP]
19	Reserved (for Security)	[Solo]			

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml#icmp-parameters-types

IANA: Internet Assigned Numbers Authority

Internet Control Message Protocol (ICMP)

NETWORKING 102

IPv4 Addresses

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

SBE

The Virtual IPv4 Address

- 32-bit binary address
- 32-bit binary subnet mask
- 2³² equals 4,294,967,296 addresses
- 32 bits are divided into four (4) octets/Bytes
- The virtual IPv4 address is expressed in "Dotted Decimal" (aka a "Dotted Quad") format, i.e. 192.168.1.1
- The IPv4 subnet mask is similarly expressed, i.e. 255.255.255.0

Version (4)	IHL (4)	Precedence/ToS (8)	Total Length (16)		
Identification (16)			Flags (3)	Fragment Offset (13)	
Time t		Protocol (8)	Header Checksum (16)		
	Source IP Address (32) Destination IP Address (32)				
Options & Padding (0 or 32)					
	Packet Payload (Transport Layer Data)				

32 bit IP Address 11000000.10101000.00000001.01001001 (3,232,235,849; 0xC0.A8.01.49)						
Octet 1 Octet 2 Octet 3 Octet 4						
11000000	10101000	0000001	01001001			
192 168 1 73						
4 Dytos						

32 bit Subnet Mask 11111111.111111111111111.00000000					
Octet 1	Octet 1 Octet 2 Octet 3				
11111111	11111111 11111111 11111111				
255	255 255 255				
Network Bits Host					

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

IPv4 Addresses NETWORKING 102

4 Bytes -

IPv4 Classes and Default Masks

	32 bits					
	8 bits	8 bits				
	Network	Host	Host	Host		
Class A	8 bits		24 bits			
		Default Mas	sk: 255.0.0.0			
	Network	Network	Host	Host		
Class B	16 bits 16			bits		
	Default Mask: 255.255.0.0					
	Network	Network	Network	Host		
Class C		8 bits				
	Default Mask: 255.255.25					
Class D	Multicast					
Class E	Experimental					

IPv4 Classes and Default Masks
NETWORKING 102

Look at all those bits!

	Class A	Class B	Class C
Octet 1 Range	1 - 126	128 – 191	192 – 223
Network Range	1.0.0.0 – 127.0.0.0	128.0.0.0 – 191.255.0.0	192.0.0.0 – 223.255.255.0
<u>Available</u> Networks (2network_bits)	126	16,384	2,097,152
Available Hosts/Network	16,777,214	65,534	254
Network bits	8	16	24
Host bits	24	16	8
Default Mask	255.0.0.0	255.255.0.0	255.255.255.0
Must.	0	1 0	1 1 0
Examine. Bits. Closer!	Octet 1	Octet 1	Octet 1

Note: 127.x.x.x is reserved for loopback IP addresses. See RFCs 820 & 5735.

Class A - Octet 1

<u>0</u>0000001 - <u>0</u>1111110 1 - 126 (0, 127 rsvd) 1.0.0.0 - 126.255.255.255

Class B - Octet 1

10000000 - **10**111111

128 - 191

128.0.0.0 - 191.255.255.255

Class C - Octet 1

11000001 - **110**11111

192 - 223

192.0.0.0 - 223.255.255.255

bits / Base2							
7	6	5	4	3	2	1	0
128	64	32	16	8	4	7	1

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

IPv4 Classes and Default Masks
NETWORKING 102

IPv4 Reserved Address Space

Special Use (aka "Reserved") IPv4 Address Space – RFC 5735

https://datatracker.ietf.org/doc/html/rfc5735

IP Address Range	Assigned Use	RFC(s)
0.0.0.0/8	Source hosts on "this" network	1122
10.0.0.0/8	Private networks; Not routed on the Internet	<u>1918</u>
127.0.0.0/8	Loopback address, 127.0.0.1/32 (localhost)	<u>1122</u>
169.254.0.0/16	Link local; Auto-config when DHCP unavailable	3927
172.16.0.0/12	Private networks; Not routed on the Internet	<u>1918</u>
192.168.0.0/16	Private networks; Not routed on the Internet	<u>1918</u>
224.0.0.0/4	Multicast; Formerly Class D	<u>3171</u>
240.0.0.0/4	Reserved for future use; Formerly Class E	<u>1112 S4</u>
255.255.255/32	Limited Broadcast Address	<u>919</u> , <u>922</u>

And so, 2³², or about 4.3 billion, becomes approximately 3.7 billion usable IPv4 addresses.

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

IPv4 Reserved Address Space
NETWORKING 102

VLSM and CIDR

Variable Length Subnet Masking and

Classless Inter Domain Routing

Variable Length Subnet Masking and Classless Internet Domain Routing

RFC <u>1009</u>, <u>1517</u>, <u>1518</u>, <u>1519</u>, <u>1520</u>

Variable Length Subnet Masking (VLSM)

- Allows "classless" subnetting
 - Mask information is explicit
- Allows a subnet to be subnetted
 - Takes from host bits
- Some advantages include:
 - Subnet size is variable
 - Less IP space waste
 - More efficient
 - Greater flexibility
 - More scalable

Classless Internet Domain Routing (CIDR)

- Classes (i.e. A, B, C) no longer apply
- IP addresses can be allocated and routed based on network prefix instead of class
- Allows supernets to be created
 - Combines a group of class networks
- CIDR notation is often used
 - Also called slash notation
 - ex. 255.255.240.0 = /20 (20 network bits)
 - Use: 192.168.1.1/24 (255.255.255.0 mask)
- Some advantages include:
 - Efficient use of IP addresses
 - Flexibility
 - Improved routing

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

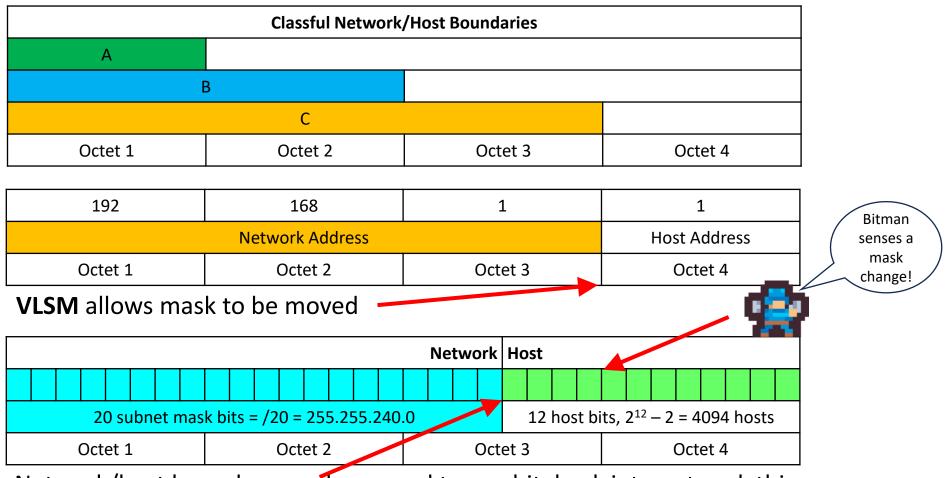
VLSM and CIDR NETWORKING 102

VLSM and CIDR – What's the Difference?

Variable Length Subnet Masking (VLSM)

- Defined as the capability to specify a different subnet mask for the same network number on different subnets.
- Helps optimize available address space.
- Allows bits to be borrowed from the host bits.

Classless Internet Domain Routing (CIDR)


- A technique that is supported by BGP-4 and based on route aggregation.
- Refers to the network and subnet bits of the network mask.

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

VLSM and CIDR NETWORKING 102

VLSM Illustrated

Network/host boundary can be moved to any bit, back into network this case

SBE.

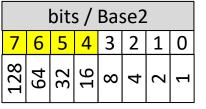
Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

VLSM and CIDR NETWORKING 102

Classful Addressing:

- 192.168.1.1
- 255.255.255.0 mask implied

VLSM Addressing:


- 192.168.1.1 255.255.240.0
- 255.255.240.0 explicit mask

CIDR (aka "Slash") Notation:

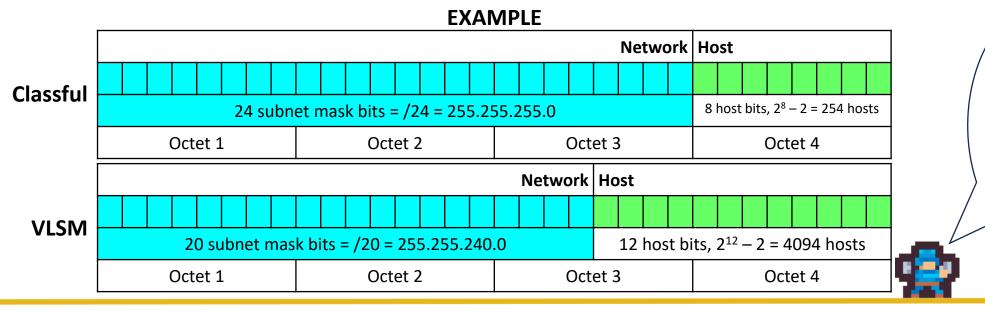
• 192.168.1.1/20

VLSM and CIDR Example:

Both have 20 network bits

I wear a mask.

And that mask, it's not to hide


who I am, but

to specify a different

subnet mask and optimize

available address space.

- Remember the powers of 2, see chart above
- A 255 means there's a 1 in each position (add all the values)
- The 240 from the example, add bits 7 4

SBE.

Society of Broadcast Engineers
The Association for Broadcast and
Multimedia Technology Professionals

IPv4 Address Mask Formats
NETWORKING 102

The 10 Commandments of IPv4 Addressing

Bitman lives by these commands!

IP ADDRESSING 10 COMMANDMENTS

I. THOU SHALT HAVE A UNIQUE NETWORK ID.

II. THOU SHALT HAVE A UNIQUE HOST ID.

III. THINE IP ADDRESS SHALT HAVE A SUBNET MASK, IMPLIED SHALT BE THE CLASSFUL NETWORK MASKS, EXPLICIT SHALT BE THE CLASSLESS NETWORK MASKS.

IV. Thou shalt not use the first IP address of thine network for thine host, for it is thine network.

V. THOU SHALT NOT USE THE LAST IP ADDRESS OF THINE NETWORK FOR THINE HOST, FOR IT IS THINE BROADCAST.

IP ADDRESSING 10 COMMANDMENTS

VI. PUBLIC IP ADDRESS SPACE SHALT BE ROUTABLE OVER THE GLOBAL INTERNET.

VII. IP ADDRESS ALLOCATION SHALT BE GOVERNED BY THE IANA.

VIII. PRIVATE IP ADDRESS SPACE SHALT NOT BE ROUTED OVER THE GLOBAL INTERNET BY ANY MEANS, TO DO SO IS ABOMINATION.

IX. PRIVATE IP ADDRESS SPACE SHALT BE FREELY ASSIGNABLE BY THINE ORGANIZATION.

X. Thou shalt cherish thine home (Localhost, 127.0.0.1/32, RFC 1122) and all RFC's.

Now, let's work through some examples and exercises...

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

The IP Addressing 10 Commandments
NETWORKING 102

Examples and Exercises

Learn By Doing!

Description	Octet 1	Octet 2	Octet 3	Octet 4
Class A Subnet Mask (Bin)	<u>11111111</u>	00000000	00000000	0000000
Class B Subnet Mask (Bin)	<u>11111111</u>	<u>11111111</u>	00000000	00000000
Class C Subnet Mask (Bin)	<u>11111111</u>	<u>11111111</u>	<u>11111111</u>	00000000
IP Address (Dec)	192	168	195	39
IP Address (Bin)	11000000	10101000	11000011	00100111
Class Subnet Mask (Bin)	<u>11111111</u>	<u>11111111</u>	<u>11111111</u>	00000000
Class Subnet Mask (Dec)	255	255	255	0
Network Address (Bin)	11000000	10101000	11000011	00000000
Network Address (Dec)	192	168	195	0
Mask 2 (Bin)	<u>11111111</u>	<u>11111111</u>	<u>1111</u> 0000	00000000
Mask 2 (Dec)	255	255	240	0
Network Address 2 (Bin)	11000000	10101000		oh 00000000
Network Address 2 (Dec)	192	168	107 1	ah! man 0
	<u>Network</u> Ł	<u>oits</u> Host bits	lik	es!

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

IPv4 Examples and Exercises


NETWORKING 102

	_
	_
T	
	a Car
-	
a	
	L
0.00	
	_

SBE

Description	Octet 1	Octet 2	Octet 3	Octet 4	
IP Address (Dec)	192	168	222	67	
IP Address (Bin)	11000000	10101000	11000011	01000011	
Subnet Mask (Bin)	<u>11111111</u>	<u>11111111</u>	<u>1111111</u>	<u>111</u> 00000 	
Subnet Mask (Dec)	255	255	255	224	
Network Address (Bin)	11000000	10101000	11000011	01000000 -	
Network Address (Dec)	192	168	222	64	
Broadcast Address (Bin)	11000000	10101000	11000011	010 <u>11111</u>	
Broadcast Address (Dec)	192	168	222	95	
<u>Network bits</u> Host bits					

Host bits all 1's

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

IPv4 Examples and Exercises NETWORKING 102

Continuing with examples and exercises...

Understand how & why, then use IP Subnet Calculators

One I've written is...

Man-IP-ulator

https://streetmangames.itch.io/man-ip-ulator

Note: Requires graphics card (and browser) that supports WebGL. Most systems do these days, but some older machines don't, or drivers might need updates.

Work continues on the IPv4 address training game part, Mad Netter, but it's somewhat playable.

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

IPv4 Examples and Exercises

NETWORKING 102

Summary

- Understanding IPv4 addressing is essential for the Broadcast Engineer.
- Every host must have a unique network ID.
- Every network must have a unique network ID.
- Every IP address has either an implied or explicit subnet mask.
- There are a number of reserved IP address blocks (RFC 5735).
- VLSM has replaced classful address, but it's important to remember classes.
- It's important to recognize CIDR notation and be able to convert to dotteddecimal.
- Remember the key RFC's and use them to locate information you need.
- Use an IP subnet calculator to double-check or quickly calculate needed information, but endeavor to remember how IP addressing works!

Society of Broadcast Engineers The Association for Broadcast and Multimedia Technology Professionals

Summary NETWORKING 102

NETWORKING 101 / 102

"Climbing" the Network "Tower" (Network Standards and Topologies)

&

Focus On IPv4 Addressing

